Complete Solutions Manual to Accompany

Contemporary Abstract Algebra

NINTH EDITION
Joseph Gallian
University of Minnesota Duluth

Prepared by
Joseph Gallian
University of Minnesota Duluth

© 2017 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher except as may be permitted by the license terms below.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions Further permissions questions can be emailed to permissionrequest@cengage.com.

ISBN-13: 978-13056579-84
ISBN-10: 0-130565798-5

Cengage Learning

200 First Stamford Place, 4th Floor
Stamford, CT 06902
USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: www.cengage.com/global.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com.

Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com.

READ IMPORTANT LICENSE INFORMATION

Dear Professor or Other Supplement Recipient:
Cengage Learning has provided you with this product (the "Supplement") for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the "Course"), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.

Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they
may not copy or distribute any portion of the Supplement to any third party. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.

All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an "as is" basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State's conflict of law rules.

Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.

CONTEMPORARY ABSTRACT ALGEBRA 9TH EDITION INSTRUCTOR SOLUTION MANUAL

 CONTENTS

 CONTENTS}

Integers and Equivalence Relations

0 Preliminaries 1

Groups

1 Introduction to Groups 7
2 Groups 9
3 Finite Groups; Subgroups 13
4 Cyclic Groups 20
5 Permutation Groups 27
6 Isomorphisms 34
7 Cosets and Lagrange's Theorem 40
8 External Direct Products 46
9 Normal Subgroups and Factor Groups 53
10 Group Homomorphisms 59
11 Fundamental Theorem of Finite Abelian Groups 65
12 Introduction to Rings 69
13 Integral Domains 74
14 Ideals and Factor Rings 80
15 Ring Homomorphisms 87
16 Polynomial Rings 94
17 Factorization of Polynomials 100
18 Divisibility in Integral Domains 105

Fields

19 Vector Spaces 110
20 Extension Fields114
21 Algebraic Extensions 118
22 Finite Fields 123
23 Geometric Constructions 127
Special Topics
24 Sylow Theorems 129
25 Finite Simple Groups 135
26 Generators and Relations 140
27 Symmetry Groups 144
28 Frieze Groups and Crystallographic Groups 146
29 Symmetry and Counting 148
30 Cayley Digraphs of Groups 151
31 Introduction to Algebraic Coding Theory 154
32 An Introduction to Galois Theory 158
33 Cyclotomic Extensions 161

CHAPTER 0

Preliminaries

1. $\{1,2,3,4\} ;\{1,3,5,7\} ;\{1,5,7,11\} ;\{1,3,7,9,11,13,17,19\}$;
$\{1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19,21,22,23,24\}$
2. a. $2 ; 10$ b. $4 ; 40$ c. $4: 120 ;$ d. $1 ; 1050$ e. $p q^{2} ; p^{2} q^{3}$
3. $12,2,2,10,1,0,4,5$.
4. $s=-3, t=2 ; s=8, t=-5$
5. By using 0 as an exponent if necessary, we may write $a=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}$ and $b=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$, where the p 's are distinct primes and the m 's and n 's are nonnegative. Then $\operatorname{lcm}(a, b)=p_{1}^{s_{1}} \cdots p_{k}^{s_{k}}$, where $s_{i}=\max \left(m_{i}, n_{i}\right)$ and $\operatorname{gcd}(a, b)=p_{1}^{t_{1}} \cdots p_{k}^{t_{k}}$, where $t_{i}=\min \left(m_{i}, n_{i}\right)$ Then $\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=p_{1}^{m_{1}+n_{1}} \cdots p_{k}^{m_{k}+n_{k}}=a b$.
6. The first part follows from the Fundamental Theorem of Arithmetic; for the second part, take $a=4, b=6, c=12$.
7. Write $a=n q_{1}+r_{1}$ and $b=n q_{2}+r_{2}$, where $0 \leq r_{1}, r_{2}<n$. We may assume that $r_{1} \geq r_{2}$. Then $a-b=n\left(q_{1}-q_{2}\right)+\left(r_{1}-r_{2}\right)$, where $r_{1}-r_{2} \geq 0$. If $a \bmod n=b \bmod n$, then $r_{1}=r_{2}$ and n divides $a-b$. If n divides $a-b$, then by the uniqueness of the remainder, we then have $r_{1}-r_{2}=0$. Thus, $r_{1}=r_{2}$ and therefore $a \bmod n=b \bmod n$.
8. Write $a s+b t=d$. Then $a^{\prime} s+b^{\prime} t=(a / d) s+(b / d) t=1$.
9. By Exercise 7, to prove that $(a+b) \bmod n=\left(a^{\prime}+b^{\prime}\right) \bmod n$ and $(a b) \bmod n=\left(a^{\prime} b^{\prime}\right) \bmod n$ it suffices to show that n divides $(a+b)-\left(a^{\prime}+b^{\prime}\right)$ and $a b-a^{\prime} b^{\prime}$. Since n divides both $a-a^{\prime}$ and n divides $b-b^{\prime}$, it divides their difference. Because $a=a^{\prime} \bmod n$ and $b=b^{\prime} \bmod n$ there are integers s and t such that $a=a^{\prime}+n s$ and $b=b^{\prime}+n t$. Thus $a b=\left(a^{\prime}+n s\right)\left(b^{\prime}+n t\right)=a^{\prime} b^{\prime}+n s b^{\prime}+a^{\prime} n t+n s n t$. Thus, $a b-a^{\prime} b^{\prime}$ is divisible by n.
10. Write $d=a u+b v$. Since t divides both a and b, it divides d. Write $s=m q+r$ where $0 \leq r<m$. Then $r=s-m q$ is a common multiple of both a and b so $r=0$.
11. Suppose that there is an integer n such that $a b \bmod n=1$. Then there is an integer q such that $a b-n q=1$. Since d divides both a and n, d also divides 1 . So, $d=1$. On the other hand, if $d=1$, then by the corollary of Theorem 0.2 , there are integers s and t such that $a s+n t=1$. Thus, modulo n, as $=1$.
12. $7(5 n+3)-5(7 n+4)=1$
13. By the GCD Theorem there are integers s and t such that $m s+n t=1$. Then $m(s r)+n(t r)=r$.
14. It suffices to show that $\left(p^{2}+q^{2}+r^{2}\right) \bmod 3=0$. Notice that for any integer a not divisible by $3, a \bmod 3$ is 1 or 2 and therefore $a^{2} \bmod 3=1$. So, $\left(p^{2}+q^{2}+r^{2}\right) \bmod 3=p^{2} \bmod 3+q^{2} \bmod 3+r^{2} \bmod 3=3 \bmod 3=$ 0.
15. Let p be a prime greater than 3. By the Division Algorithm, we can write p in the form $6 n+r$, where r satisfies $0 \leq r<6$. Now observe that $6 n, 6 n+2,6 n+3$, and $6 n+4$ are not prime.
16. By properties of modular arithmetic we have $\left(7^{1000}\right) \bmod 6=(7 \bmod 6)^{1000}=1^{1000}=1$. Similarly, $\left(6^{1001}\right) \bmod 7=(6 \bmod 7)^{1001}=-1^{1001} \bmod 7=-1=6 \bmod 7$.
17. Since $s t$ divides $a-b$, both s and t divide $a-b$. The converse is true when $\operatorname{gcd}(s, t)=1$.
18. Observe that $8^{402} \bmod 5=3^{402} \bmod 5$ and $3^{4} \bmod 5=1$. Thus, $8^{402} \bmod$ $5=\left(3^{4}\right)^{100} 3^{2} \bmod 5=4$.
19. If $\operatorname{gcd}(a, b c)=1$, then there is no prime that divides both a and $b c$. By Euclid's Lemma and unique factorization, this means that there is no prime that divides both a and b or both a and c. Conversely, if no prime divides both a and b or both a and c, then by Euclid's Lemma, no prime divides both a and $b c$.
20. If one of the primes did divide $k=p_{1} p_{2} \cdots p_{n}+1$, it would also divide 1 .
21. Suppose that there are only a finite number of primes $p_{1}, p_{2}, \ldots, p_{n}$. Then, by Exercise 20, $p_{1} p_{2} \ldots p_{n}+1$ is not divisible by any prime. This means that $p_{1} p_{2} \ldots p_{n}+1$, which is larger than any of $p_{1}, p_{2}, \ldots, p_{n}$, is itself prime. This contradicts the assumption that $p_{1}, p_{2}, \ldots, p_{n}$ is the list of all primes.
22. $\frac{-7}{58}+\frac{3}{58} i$
23. $\frac{-5+2 i}{4-5 i}=\frac{-5+2 i}{4-5 i} \frac{4+5 i}{4+5 i}=\frac{-30}{41}+\frac{-17}{41} i$
24. Let $z_{1}=a+b i$ and $z_{2}=c+d i$. Then $z_{1} z_{2}=(a c-b d)+(a d+b c) ;\left|z_{1}\right|=$ $\sqrt{a^{2}+b^{2}},\left|z_{2}\right|=\sqrt{c^{2}+d^{2}},\left|z_{1} z_{2}\right|=\sqrt{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}}=\left|z_{1}\right|\left|z_{2}\right|$.
25. x NAND y is 1 if and only if both inputs are $0 ; x$ XNOR y is 1 if and only if both inputs are the same.
26. If $x=1$, the output is y, else it is z.
27. Let S be a set with $n+1$ elements and pick some a in S. By induction, S has 2^{n} subsets that do not contain a. But there is one-to-one correspondence between the subsets of S that do not contain a and those that do. So, there are $2 \cdot 2^{n}=2^{n+1}$ subsets in all.
28. Use induction and note that $2^{n+1} 3^{2 n+2}-1=18\left(2^{n} 3^{2 n}\right)-1=18\left(2^{n} 3^{3 n}-1\right)+17$.
29. Consider $n=200!+2$. Then 2 divides $n, 3$ divides $n+1,4$ divides $n+2, \ldots$, and 202 divides $n+200$.
30. Use induction on n.
31. Say $p_{1} p_{2} \cdots p_{r}=q_{1} q_{2} \cdots q_{s}$, where the p 's and the q 's are primes. By the Generalized Euclid's Lemma, p_{1} divides some q_{i}, say q_{1} (we may relabel the q 's if necessary). Then $p_{1}=q_{1}$ and $p_{2} \cdots p_{r}=q_{2} \cdots q_{s}$. Repeating this argument at each step we obtain $p_{2}=q_{2}, \cdots, p_{r}=q_{r}$ and $r=s$.
32. 47. Mimic Example 12.
1. Suppose that S is a set that contains a and whenever $n \geq a$ belongs to S, then $n+1 \in S$. We must prove that S contains all integers greater than or equal to a. Let T be the set of all integers greater than a that are not in S and suppose that T is not empty. Let b be the smallest integer in T (if T has no negative integers, b exists because of the Well Ordering Principle; if T has negative integers, it can have only a finite number of them so that there is a smallest one). Then $b-1 \in S$, and therefore $b=(b-1)+1 \in S$. This contradicts our assumption that b is not in S.
2. By the Second Principle of Mathematical Induction,
$f_{n}=f_{n-1}+f_{n-2}<2^{n-1}+2^{n-2}=2^{n-2}(2+1)<2^{n}$.
3. For $n=1$, observe that $1^{3}+2^{3}+3^{3}=36$. Assume that $n^{3}+(n+1)^{3}+(n+2)^{3}=9 m$ for some integer m. We must prove that $(n+1)^{3}+(n+2)^{3}+(n+3)^{3}$ is a multiple of 9 . Using the induction hypothesis we have that
$(n+1)^{3}+(n+2)^{3}+(n+3)^{3}=9 m-n^{3}+(n+3)^{3}=$ $9 m-n^{3}+n^{3}+3 \cdot n^{2} \cdot 3+3 \cdot n \cdot 9+3^{3}=9 m+9 n^{2}+27 n+27=9\left(m+n^{2}+3 n+3\right)$.
4. You must verify the cases $n=1$ and $n=2$. This situation arises in cases where the arguments that the statement is true for n implies that it is true for $n+2$ is different when n is even and when n is odd.
5. The statement is true for any divisor of $8^{3}-4=508$.
6. One need only verify the equation for $n=0,1,2,3,4,5$. Alternatively, observe that $n^{3}-n=n(n-1)(n+1)$.
7. Since $3736 \bmod 24=16$, it would be 6 p.m.
8. 5
9. Observe that the number with the decimal representation $a_{9} a_{8} \ldots a_{1} a_{0}$ is $a_{9} 10^{9}+a_{8} 10^{8}+\cdots+a_{1} 10+a_{0}$. From Exercise 9 and the fact that $a_{i} 10^{i} \bmod 9=a_{i} \bmod 9$ we deduce that the check digit is $\left(a_{9}+a_{8}+\cdots+a_{1}+a_{0}\right) \bmod 9$. So, substituting 0 for 9 or vice versa for any a_{i} does not change the value of $\left(a_{9}+a_{8}+\cdots+a_{1}+a_{0}\right) \bmod 9$.
10. No
11. For the case in which the check digit is not involved, the argument given Exercise 41 applies to transposition errors. Denote the money order number by $a_{9} a_{8} \ldots a_{1} a_{0} c$ where c is the check digit. For a transposition involving the check digit $c=\left(a_{9}+a_{8}+\cdots+a_{0}\right) \bmod 9$ to go undetected, we must have $a_{0}=\left(a_{9}+a_{8}+\cdots+a_{1}+c\right) \bmod 9$. Substituting for c yields $2\left(a_{9}+a_{8}+\cdots+a_{0}\right) \bmod 9=a_{0}$. Then cancelling the a_{0}, multiplying by sides by 5 , and reducing module 9 , we have
$10\left(a_{9}+a_{8}+\cdots+a_{1}\right)=a_{9}+a_{8}+\cdots+a_{1}=0$. It follows that $c=a_{9}+a_{8} \cdots+a_{1}+a_{0}=a_{0}$. In this case the transposition does not yield an error.
12. 4
13. Say the number is $a_{8} a_{7} \ldots a_{1} a_{0}=a_{8} 10^{8}+a_{7} 10^{7}+\cdots+a_{1} 10+a_{0}$. Then the error is undetected if and only if $\left(a_{i} 10^{i}-a_{i}^{\prime} 10^{i}\right) \bmod 7=0$. Multiplying both sides by 5^{i} and noting that $50 \bmod 7=1$, we obtain $\left(a_{i}-a_{i}^{\prime}\right) \bmod 7=0$.
14. All except those involving a and b with $|a-b|=7$.
15. 4
16. Observe that for any integer k between 0 and $8, k \div 9=. k k k \ldots$
17. 7
18. Say that the weight for a is i. Then an error is undetected if modulo 11, $a i+b(i-1)+c(i-2)=b i+c(i-1)+a(i-2)$. This reduces to the cases where $(2 a-b-c) \bmod 11=0$.
19. Say the valid number is $a_{1} a_{2} \ldots a_{10}$ and a_{i} and a_{i+1} were transposed.

Then, modulo 11, $10 a_{1}+9 a_{2}+\cdots+a_{10}=0$ and $10 a_{1}+\cdots+(11-i) a_{i+1}+(11-(i+1)) a_{i}+\cdots+a_{10}=5$. Thus, $5=5-0=$ $\left(10 a_{1}+\cdots+(11-i) a_{i+1}+(11-(i+1)) a_{i}+a_{10}\right)-\left(10 a_{1}+9 a_{2}+\cdots+a_{10}\right)$. It follows that $\left(a_{i+1}-a_{i}\right) \bmod 11=5$. Now look for adjacent digits x and y in the invalid number so that $(x-y) \bmod 11=5$. Since the only pair is 39, the correct number is 0-669-09325-4.
53. Since $10 a_{1}+9 a_{2}+\cdots+a_{10}=0 \bmod 11$ if and only if
$0=\left(-10 a_{1}-9 a_{2}-\cdots-10 a_{10}\right) \bmod 11=\left(a_{1}+2 a_{2}+\cdots+10 a_{10}\right) \bmod 11$, the check digit would be the same.
54. 7344586061
55. First note that the sum of the digits modulo 11 is 2 . So, some digit is 2 too large. Say the error is in position i. Then
$10=(4,3,0,2,5,1,1,5,6,8) \cdot(1,2,3,4,5,6,7,8,9,10) \bmod 11=2 i$. Thus, the digit in position 5 to 2 too large. So, the correct number is 4302311568 .
56. An error in an even numbered position changes the value of the sum by an even amount. However,
$(9 \cdot 1+8 \cdot 4+7 \cdot 9+6 \cdot 1+5 \cdot 0+4 \cdot 5+3 \cdot 2+2 \cdot 6+7) \bmod 10=5$.
57. 2. Since β is one-to-one, $\beta\left(\alpha\left(a_{1}\right)\right)=\beta\left(\alpha\left(a_{2}\right)\right)$ implies that $\alpha\left(a_{1}\right)=\alpha\left(a_{2}\right)$ and since α is one-to-one, $a_{1}=a_{2}$.
3. Let $c \in C$. There is a b in B such that $\beta(b)=c$ and an a in A such that $\alpha(a)=b$. Thus, $(\beta \alpha)(a)=\beta(\alpha(a))=\beta(b)=c$.
4. Since α is one-to-one and onto we may define $\alpha^{-1}(x)=y$ if and only if $\alpha(y)=x$. Then $\alpha^{-1}(\alpha(a))=a$ and $\alpha\left(\alpha^{-1}(b)\right)=b$.
58. $a-a=0$; if $a-b$ is an integer k then $b-a$ is the integer $-k$; if $a-b$ is the integer n and $b-c$ is the integer m, then $a-c=(a-b)+(b-c)$ is the integer $n+m$. The set of equivalence classes is $\{[k] \mid 0 \leq k<1, \quad k$ is real $\}$. The equivalence classes can be represented by the real numbers in the interval $[0,1)$. For any real number $a,[a]=\{a+k \mid$ where k ranges over all integers .
59. No. $(1,0) \in R$ and $(0,-1) \in R$ but $(1,-1) \notin R$.
60. Obviously, $a+a=2 a$ is even and $a+b$ is even implies $b+a$ is even. If $a+b$ and $b+c$ are even, then $a+c=(a+b)+(b+c)-2 b$ is also even. The equivalence classes are the set of even integers and the set of odd integers.
61. a belongs to the same subset as a. If a and b belong to the subset A and b and c belong to the subset B, then $A=B$, since the distinct subsets of P are disjoint. So, a and c belong to A.
62. Suppose that n is odd prime greater than 3 and $n+2$ and $n+4$ are also prime. Then $n \bmod 3=1$ or $n \bmod 3=2$. If $n \bmod 3=1$ then $n+2 \bmod 3=0$ and so is not prime. If $n \bmod 3=2$ then $n+4 \bmod 3=0$ and so is not prime.
63. The last digit of 3^{100} is the value of $3^{100} \bmod 10$. Observe that $3^{100} \bmod$ 10 is the same as $\left(\left(3^{4} \bmod 10\right)^{25} \bmod 10\right.$ and $3^{4} \bmod 10=1$. Similarly, the last digit of 2^{100} is the value of $2^{100} \bmod 10$. Observe that $2^{5} \bmod 10$ $=2$ so that $2^{100} \bmod 10$ is the same as
$\left(2^{5} \bmod 10\right)^{20} \bmod 10=2^{20} \bmod 10=\left(2^{5}\right)^{4} \bmod 10=2^{4} \bmod 10=6$.
64. Suppose that there are integers a, b, c, and d with $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(c, d)=1$ such that $a^{2} / b^{2}-c^{2} / d^{2}=1002$. Then $a^{2} d^{2}-c^{2} b^{2}=1002 b^{2} d^{2}$. If both b and d are odd, then modulo 4 , $b^{2}=d^{2}=1$ and $a^{2} / b^{2}-c^{2} / d^{2}=1002$ reduces to $a^{2}-c^{2}=2$. This case is handled in Example 7. If $2^{i}(i>0)$ divides b, then a is odd and $a^{2} d^{2}-c^{2} b^{2}=1002 b^{2} d^{2}$ implies that 2^{i} divides d also. It follows that if 2^{n} is the highest power of 2 that divides one of b or d, then 2^{n} is the highest power of 2 that divides the other. So dividing both sides of $a^{2} d^{2}-c^{2} b^{2}=1002 b^{2} d^{2}$ by 2^{n} we get an equation of the same form where both b and d are odd. Taking both sides modulo 4 and recalling that for odd $x, x^{2} \bmod 4=1$ we have that $a^{2} d^{2}-c^{2} b^{2}=1002 b^{2} d^{2}$ reduces $a^{2}-c^{2}=2$, which was done in Example 7.
65. Apply γ^{-1} to both sides of $\alpha \gamma=\beta \gamma$.

CHAPTER 1

Introduction to Groups

1. Three rotations: $0^{\circ}, 120^{\circ}, 240^{\circ}$, and three reflections across lines from vertices to midpoints of opposite sides.
2. Let $R=R_{120}, R^{2}=R_{240}, F$ a reflection across a vertical axis, $F^{\prime}=R F$ and $F^{\prime \prime}=R^{2} F$

	R_{0}	R	R^{2}	F	F^{\prime}	$F^{\prime \prime}$
R_{0}	R_{0}	R	R^{2}	F	F^{\prime}	$F^{\prime \prime}$
R	R	R^{2}	R_{0}	F^{\prime}	$F^{\prime \prime}$	F
R^{2}	R^{2}	R_{0}	R	$F^{\prime \prime}$	F	F^{\prime}
F	F	$F^{\prime \prime}$	F^{\prime}	R_{0}	R^{2}	R
F^{\prime}	F^{\prime}	F	$F^{\prime \prime}$	R	R_{0}	R^{2}
$F^{\prime \prime}$	$F^{\prime \prime}$	F^{\prime}	F	R^{2}	R	R_{0}

3. a. V b. R_{270} c. R_{0} d. $R_{0}, R_{180}, H, V, D, D^{\prime} \quad$ e. none
4. Five rotations: $0^{\circ}, 72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}$, and five reflections across lines from vertices to midpoints of opposite sides.
5. D_{n} has n rotations of the form $k\left(360^{\circ} / n\right)$, where $k=0, \ldots, n-1$. In addition, D_{n} has n reflections. When n is odd, the axes of reflection are the lines from the vertices to the midpoints of the opposite sides. When n is even, half of the axes of reflection are obtained by joining opposite vertices; the other half, by joining midpoints of opposite sides.
6. A nonidentity rotation leaves only one point fixed - the center of rotation. A reflection leaves the axis of reflection fixed. A reflection followed by a different reflection would leave only one point fixed (the intersection of the two axes of reflection) so it must be a rotation.
7. A rotation followed by a rotation either fixes every point (and so is the identity) or fixes only the center of rotation. However, a reflection fixes a line.
8. In either case, the set of points fixed is some axis of reflection.
9. Observe that $1 \cdot 1=1 ; 1(-1)=-1 ;(-1) 1=-1 ;(-1)(-1)=1$. These relationships also hold when 1 is replaced by a "rotation" and -1 is replaced by a "reflection."
10. reflection.
11. Thinking geometrically and observing that even powers of elements of a dihedral group do not change orentation we note that each of a, b and c appears an even number of times in the expression. So, there is no change in orentation. Thus, the expression is a rotation. Alternatively, as in Exercise 9 , we associate each of a, b and c with 1 if they are rotations and -1 if they are reflections and we observe that in the product $a^{2} b^{4} a c^{5} a^{3} c$ the terms involving a represents six 1 s or six -1 s , the term b^{4} represents four 1 s or four -1 s , and the terms involving c represents six 1 s or $\operatorname{six}-1 \mathrm{~s}$. Thus the product of all the 1 s and -1 s is 1 . So the expression is a rotation.
12. H, I, O, X. Rotations of $0^{\circ}, 180^{\circ}$, horizontal reflection, and vertical reflection.
13. In $D_{4}, H D=D V$ but $H \neq V$.
14. D_{n} is not commutative.
15. R_{0}, R_{180}, H, V
16. Rotations of 0° and 180°; Rotations of 0° and 180° and reflections about the diagonals.
17. R_{0}, R_{180}, H, V
18. Let the distance from a point on one H to the corresponding point on an adjacent H be one unit. Then translations of any number of units to the right or left are symmetries; reflection across the horizontal axis through the middle of the H 's is a symmetry; reflection across any vertical axis midway between two H 's or bisecting any H is a symmetry. All other symmetries are compositions of finitely many of those already described. The group is non-Abelian.
19. In each case the group is D_{6}.
20. D_{28}
21. First observe that $X^{2} \neq R_{0}$. Since R_{0} and R_{180} are the only elements in D_{4} that are squares we have $X^{2}=R_{180}$. Solving $X^{2} Y=R_{90}$ for Y gives $Y=R_{270}$.
22. $X^{2}=F$ has no solutions; the only solution to $X^{3}=F$ is F.
23. 180° rotational symmetry.
24. $\quad Z_{4}, \quad D_{5}, \quad D_{4}, \quad Z_{2}$
$D_{4}, \quad Z_{3}, \quad D_{3}, \quad D_{16}$
$D_{7}, \quad D_{4}, \quad D_{5}, \quad Z_{10}$
25 . Their only symmetry is the identity.
